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Abstract. Detecting abnormal heartbeats from an electrocardiogram
(ECG) signal is an important problem studied extensively and yet is
a difficult problem that defies a viable working solution, especially on
a mobile platform which requires computationally efficient and yet ac-
curate detection mechanism. In this project, a prototype system has
been built to test the feasibility and efficacy of detecting abnormal ECG
segments from an ECG data stream targeting a mobile device, where
data are arriving continuously and indefinitely and are processed on-
line incrementally and efficiently without being stored in memory. The
processing comprises three steps: (i) segmentation using R peak detec-
tion, (ii) feature extraction using discrete wavelet transform, and (iii)
outlier detection using incremental online microclustering. Experiments
conducted using real ambulatory ECG datasets showed satisfactory ac-
curacy. In addition, comparing personalized detection (tuned separately
for each patient’s ECG datasets) and non-personalized detection (tuned
aggregated over all patients’ datasets) confirms a definite advantage of
personalized detection for ECG.
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1 Introduction

There has been a significantly large body of work on automatically detecting ab-
normal segments from electrocardiogram (ECG) signal. Different methods have
been used for different work with different objectives, and in this project the
objective is real-time online incremental detection with a lightweight computa-
tional algorithm. Ideally, the computation overhead should be light enough to
run on a mobile platform such as a smartphone. The method chosen with this
objective in mind is online outlier detection based on microclustering. Addition-
ally the following choices have been made to support the objective: (1) only
one lead ECG is used as opposed to the full 12-lead ECG, and (2) clustering is
performed on features extracted from ECG segments using a computationally
efficient (O(N)) and resilient to errors [14]. Our goal in this paper is to examine
the method in light of the objective.

? Current affiliation: Department of Computer Science, North Carolina State University,
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The project started on Android smartphone platform, but then migrated to
a laptop platform and stayed there until now. Yet, with the real-time processing
expectation in mind, the algorithm chosen worked incrementally over incoming
ECG data stream with instantaneous processing, i.e., without having to store the
data in memory. The processing was done in three steps: (1) segmentation of the
ECG data, (2) feature extraction from the ECG segments, and (3) online outlier
detection from the features. Segmentation relied on R peak detection equipped
with false R peak removal. Feature extraction used Haar discrete wavelet trans-
form. Outlier detection used incremental microclustering [22].

The outcome was evaluated in terms of the detection accuracy using MIT-
BIH arrhythmia ECG datasets. When the parameters for outlier detection were
tuned personalized to individual patients’ datasets, the sensitivity, specificity,
and accuracy on average were 83%, 88%, and 92%, respectively, and when ag-
gregated over all patients’ datasets using the average parameter values, they
were 56%, 87%, and 82%, respectively. In addition, the accuracy was higher
when there was a clearer majority between normal or abnormal segments, that
is, when the ECG segments were skewed in their distribution of abnormality.
These results demonstrated the feasibility and efficacy of the detection method
employed and strongly indicated the need for personalized detection.

Main contributions of this paper can be summarized as follows: (i) to the
best of our knowledge, this is the first project using online outlier detection
mechanism to detect abnormal segments from an ECG signal; (ii) comprehensive
evaluations on the accuracy of abnormal segment detection presents a new insight
into the behavior of the online outlier detection mechanism and an empirical
perspective on the merit of personalized anomaly detection as opposed to non-
personalized.

Following this Introduction, Section 2 describes the ECG datasets used in
the project, Section 3 discusses the steps of anomaly detection process, Section 4
reports the anomaly detection accuracy in the experiment results, Section 5
discusses related work, and Section 6 concludes the paper.

2 ECG Datasets

Electrocardiogram (ECG) is an electrical signal manifesting the heartbeat over
time. It is a sequence of segments, one segment per heartbeat. Figure 1a shows
a raw (i.e., unfiltered) ECG signal with noise in it. Figure 1b illustrates the
composition of an ECG segment – each segment consists of a P wave, a QRS
complex, and a T wave.

The ECG datasets used in this project were downloaded from MIT-BIH Ar-
rhythmia Database, which contains 48 half-hour excerpts of two-channel ambu-
latory ECG recordings obtained from 47 subjects (i.e., patients) studied by the
BIH Arrhythmia Laboratory from 1975 to 1979. All recordings were gathered
using the sampling rate of 360 samples per second per channel. In this project,
we used the ECG signal on the first channel (or lead) in each dataset, namely
MLII, for all patients.
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(a) Raw ECG signal. (b) ECG segment.

Fig. 1. ECG signal.

The ECG datasets are annotated with the codes denoting the normality
or abnormality of segments at each R peak location. A complete list of those
annotation codes can be found at the PhysioBank Annotation web site [19].
Table 1 shows the annotation labels used in this project. Database code is the R
peak type annotated in the database, and AHA code is the type categorized by
the American Heart Association (AHA). We used the AHA code in this project,
and thus, the database codes ’V’, ’F’, ’ !’, ’E’,’P’, ’f’,’p’,’Q’, ’/’, and –(empty)
were considered abnormal. (The code ‘!’ is a heart beat code but incorrectly
listed as a non-beat code, and was corrected in this project.)

Table 1. List of ECG annotation codes used in this project.

Database
AHA Code Description

Code

N Normal Normal beats

L Normal Left bundle branch block beat

R Normal Right bundle branch block beat

A Normal Atrial premature beat

S Normal Supraventricular premature or ectopic beat (atrial or nodal)

! Normal Ventricular flutter wave

V Abnormal Premature ventricular contraction

j Abnormal Nodal (junctional) escape beat

F Abnormal Fusion of ventricular and normal beat

f Abnormal Fusion of paced and normal beat

E Abnormal Ventricular escape beat

Q Abnormal Unclassifiable beat

/ Abnormal Paced beat

– Abnormal No annotation found within this segment

The downloaded ECG datasets have already been filtered through a bandpass
filter to retain only the frequency range 0.1 Hz to 100 Hz and digitized at 360 Hz
using hardware built at the MIT Biomedical Engineering Center and at the
BIH Biomedical Engineering Laboratory [18]. Some ECG datasets still contained
significant noise, which had adverse effect on the resulting accuracy, while most
others were stable enough to be used without such an effect (see Section 4.2).

3 Approaches

This section discusses the specific approaches used in this project.
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3.1 Overview

Figure 2 shows a high-level overview of the steps for detecting abnormal ECG
segments from an incoming ECG signal. First, the signal is divided into consecu-
tive segments (or heartbeats). Then, in the feature extraction step, each segment
is transformed to a feature vector, which is mapped to a point in a feature vec-
tor space. The outlier detection algorithm then picks out those points farther
than a threshold from other points. These outliers are considered abnormal ECG
segments. In effect, the detection is done as an incremental unsupervised binary
classification of each segment, i.e., either normal or abnormal. Each step is dis-
cussed in more detail in the rest of this section.

Fig. 2. Overview of the approach to continuous anomaly detection from ECG signal.

3.2 Segmentation

Segmentation comprises three steps: R peak detection, segment extraction, and
false R peak removal.

R Peak Detection There are different algorithms used to detect R peaks from
raw ECG data. In this project, Chen and Chen’s moving average based filtering
algorithm [6] was used for its good performance and low computation overhead.
This algorithm performs three steps over a moving average of consecutive ECG
samples: (1) linear high-pass filtering, (2) nonlinear low-pass filtering, and (3)
decision making with adaptive threshold.

In the decision-making (step 3), an adaptive threshold T is updated in each
moving window using the formula below

T = αγP + (1− α)T

where P is the local maximum newly detected in the waveform, α is the forgetting
factor, and γ is the weighting factor to determine the contribution of peak values
to threshold adjustment.

It is suggested in their algorithm that the moving average window size M
can be 5 or 7 samples, α can be chosen from the range of 0.01 to 0.1, and γ can
be 0.15 or 0.2. In this project, we set M to 5, α to a random number from 0.01
to 0.1 at each run, and γ to 0.17 (as its showed higher R peak location accuracy
than 0.15 or 0.2).

Segment Extraction After detecting R peaks, the next step is to extract seg-
ments from the ECG data. We adopted the following formula, introduced in
Veeravalli et al.’s work [23]:

Pwindow = QRmax + 0.2 ∗RRprev + 0.1

Twindow = 1.5×QTcmax ×
√
RRprev −QRmax
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where QRmax (= 0.08) is half of the maximum of QRS duration and QTcmax (=
0.42) is the maximum value for the QT coefficient in Bazet’s formula [3] shown
below.

QTcB =
QT√
RR

The extracted segment spans the Pwindow and the Twindow.
Figure 3 shows an example ECG segment extracted using the formula. The

yellow dot marks the R peak; on its left is the P window, and on its right is the
T window.

Fig. 3. A sample ECG segment.

False R Peak Removal While the adopted
R peak detection and segment extraction algo-
rithms worked adequately for most segments,
there were quite a number of segments that
contained two R peaks, where the first one
was a true peak and the second one was a false
peak. We, therefore, added one more step to
remove the false second R peak from the seg-
ment. Specifically, if any extracted segment
has two R peaks and if the second R peak
is within the Twindow, it is detected as a false
R peak, and the end of the segment is cut 15
samples before it. This reduction length of 15 was chosen as a result of manually
checking the results for different reduction lengths ranging from 0 to 25 at the
increment of 5.

3.3 Feature Extraction

Discrete wavelet transform (DWT) was used to transform each ECG segment to
a feature vector. This step is, in effect, reducing the dimensionality of an ECG
segment of approximately 300 samples to a feature vector of 32 coefficients.
Daubechies wavelets and Haar wavelets were compared, and Haar was chosen
for its better signal restoration ability and faster speed.

Haar wavelet transform takes a pair of consecutive numbers from the input
sequence, calculates their pairwise average and puts the result in the first half,
and calculates their pairwise difference and puts the result in the second half.
Then, by taking the first half, which contains only the pairwise averages, we can
approximate the original signal, and repeating this process, we can reduce the
number of coefficients to half each time. We continued repeating until we had
32 coefficients in the first half, and then extracted the first 32 coefficients as the
feature vector. In this project, it typically took 3 iterations to finish the process.

Symmetric padding: Given the recursive two-way division performed by Haar
wavelet transform, the input length (i.e., number of data elements) should be a
power of 2. Since an ECG segment length (i.e., number of ECG samples in it) is
not a power of 2 for most segments, a certain number of data elements should
be added to make it a power of 2. There are several different ways to do it [21],
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and we chose the symmetric padding, which mirrors the data to increase the
length to the nearest next power of 2. For example, if the segment has n samples
x1x2...xn−1xn, it is mirrored on both sides to ...x2x1|x1x2...xn−1xn|xnxn−1...
symmetrically until the resultant length is a power of 2.

3.4 Outlier Detection

The output from the feature extraction step is a continuous stream of feature
vectors of 32 coefficients. Each feature vector is mapped to a point in a 32-
dimensional feature space. In feature extraction, ECG segments that have similar
shapes are mapped to points at similar coordinates in the feature space. Thus,
normal segments, which have similar shapes, are mapped to similar coordinates
and form a cluster. Abnormal segments, on the other hand, are mapped to
“outliers”, i.e., points far from other points in a cluster. So, outlier detection
is an effective mechanism to identify a point farther off from others, and such
outliers translate to abnormal ECG segments.

We adopted an outlier detection method called “Microcluster-based Contin-
uous Outlier Detection (MCOD)” [14, 8]. This method is one of popularly used
distance-based outlier detection algorithms [22], and works well as long as there
is a majority between normal or abnormal segments. The algorithm requires the
following three parameters to detect outliers.
– r: maximum allowed radius from a point
– k: minimum number of points required within the radius
– w: size (i.e., number of points) of a moving window

Microcluster-Based Continuous Outlier Detection (MCOD) MCOD is
a distance-based outlier detection (DBOD) algorithm over a data stream, en-
hanced from Continuous Outlier Detection (COD) [14]. Figure 4 illustrates the
distance-based outlier detection approach. The point a is not an outlier because
there are 3 points b, c, and e within distance r from a. In contrast, the point e is
an outlier because there is only one (i.e., less than 3) point b within the distance
r from a [12, 13].

Fig. 4. Distance-based outlier detection
when k = 3 (source: [8]).

COD is computationally efficient
in handling two cases – a new point
entering the window and an old point
leaving the window. In the former
case, it checks if any existing outliers
should become inliers after the ad-
dition of the new point. In the lat-
ter case, it checks if any existing in-
liers should become outliers after the
removal of the old point. To han-
dle these two cases, COD supports a
range query to find points within the distance r and uses an event-based queue
to check if an inlier becomes an outlier because of a point removed from the
window.
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Executing a range query can be expensive, especially when the dimension-
ality of points is high. MCOD can greatly reduce the number of range queries
performed, thereby improving the overall performance of the algorithm. A mi-
crocluster can be thought of as a small sphere in the data space. The algorithm
requires a microcluster to be of radius r/2 and contain more than k points at all
time. Any point that belongs to a microcluster is never an outlier because there
always exist more than k points within the range r in the same microcluster.
In contrast, any point that does not belong to any microcluster is very likely
to be an outlier. Every time a new point arrives in a stream, if the window is
not full, then no point is removed. Otherwise, the oldest point is removed and,
if it belongs to a microcluster, the number of members in that microcluster is
reduced by one and, if the resulting number drops below k+ 1, the microcluster
is removed and for all its members, their lists of nearest microcluster centers
within a distance of 3r/2 is updated.

MCOD may label an ECG segment as an outlier when it enters a window
and then later change it to inlier. In this project, an ECG segment is considered
an outlier only if it is labeled as an outlier throughout from the time it enters
the sliding window till the time it exits the window.

3.5 Complexity Analysis

The outlier detection algorithm MCOD can tell if an ECG segment is normal or
abnormal only after the feature point mapped from the segment passes through
the window completely. Thus, the complexity can be expressed in terms of the
segment size s and the window size w. The three-step approach – comprising
segmentation, feature extraction, and outlier detection – requires O(s + wk)
memory space, where s is the largest ECG segment size, and takes O(sw) run
time, as discussed below.

Space Complexity The segmentation step requires linear processing of the
incoming ECG data samples, and memory buffer large enough to hold the largest
ECG segment suffices to support this processing. So, the space complexity is
O(s). The feature extraction step processes each segment at a time, and for
each segment the run time is proportional to the segment size. Therefore, it
requires only the buffer space to hold the largest segment, hence O(s). The
outlier detection step requires O(wk) space. Readers are referred to the MCOD
paper [14] for a proof of this complexity.

Time Complexity Since the segmentation step processes ECG data samples
linearly, it takes O(sw) to generate w feature points in the window of the outlier
detection step. The feature extraction step to generate the w feature points
in the window is O(sw) as well because for each segment DWT takes linear
time with the segment size and each segment generates one feature point in
the window. The outlier detection step takes O(l logw) + O(m), where l is the
average number of times feature points are re-labeled as outliers as a result of
an old point removed from the window of size w and m is the average number
of feature points within the maximum allowed radius r (discussed in the MCOD
paper [14]). While the theoretical worst case time complexity of this step could
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be O(w logw), in practice it is near O(logw) because both l � w and m � w
hold. Thus, the total run time complexity for all three steps is O(sw)+O(logw),
which asymptotically equals O(sw).

4 Evaluations

This section presents the setup, results, and analysis of the experiments per-
formed to evaluate the accuracy of detecting abnormal segments from an ECG
data stream.

4.1 Experiment Setup

Development platform: The main development platform was Windows 10 laptop
with 2.6GHz dual core CPU, 8GB RAM, and 240GB SSD. In addition, a virtual
Ubuntu Server with 2.2GHz single core CPU, 1GB RAM and 25GB SSD, running
MySQL and PHPMyAdmin on DigitalOcean cloud server was used to train and
test algorithms and store the experiments results.

Datasets: MIT-BIH Arrhythmia datasets described in Section 2 were used in the
experiments. (Due to space cosntraint, tables in this section show results from 20
randomly selected datasets. Results from all 48 datasets are available at https:
//github.com/yuhang-lin/ECGAD_extended_result.) Each ECG dataset was
divided into training and testing datasets with 60%-40% split. Table 2 shows
the number and ratio of abnormal segments in training dataset and testing
dataset, respectively, for each dataset. Different patients show different abnormal
segment ratios (i.e., ratio of abnormal segments over all segments), and the ratio
varies widely. Notably, the patent 122 is a healthy patient with no heartbeat
anomaly, and the patients 222 and 231 are in good shape as well, with only a
few abnormal heartbeats. In contrast, the patient 217 is in a very poor shape,
with approximately 90% heartbeats abnormal.

Performance measures We used the traditional performance measures – sensi-
tivity, specificity, and accuracy. In light of detecting abnormal segments, (i) true
positive means detecting an abnormal segment as abnormal, (ii) true negative
means detecting a normal segment as normal, (iii) false positive means detect-
ing a normal segment as abnormal, and (iv) false negative means detecting an
abnormal as normal.

Outlier detection parameter tuning: The set of parameter values that maximizes
the anomaly detection performance was found using a random search iterated
1000 times for each ECG dataset. 1000 iterations is more than enough, and it
gives 99.996% probability of achieving near optimum within 1% of the true op-
timum. (A random search of n iterations has 1− (1− ε)n probability of finding
parameter values achieving near-optimum within the error ε from the true op-
timum [7].) The ranges of each MCOD parameter used in the experiments are
[0.1, 3.0) for the radius r, [2,80] for k, and [25,100] for window size w. After
the training process of parameter tuning through random search, we picked the
set of parameter values that maximized the accuracy, subject to the constraints
of minimum 80% required of both sensitivity and specificity. (In case none met
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Table 2. Ratios of abnormal segments in training and testing.

Training Dataset Testing Dataset
Patient
Number

Number of
Abnormal
Segments

Total
Number of

Segments

Ratio of
Abnormal
Segments

Number of
Abnormal
Segments

Total
Number of

Segments

Ratio of
Abnormal
Segments

106 224 1212 18.48% 296 808 36.63%

114 58 1138 5.10% 4 759 0.53%

116 73 1438 5.08% 38 959 3.96%

118 19 1383 1.37% 19 922 2.06%

119 232 1192 19.46% 213 796 26.76%

122 0 1485 0.00% 0 990 0.00%

200 536 1688 31.75% 466 1126 41.39%

201 135 1173 11.51% 65 782 8.31%

202 21 1281 1.64% 2 855 0.23%

205 39 1591 2.45% 41 1061 3.86%

207 307 1444 21.26% 426 963 44.24%

208 927 1760 52.67% 433 1174 36.88%

213 370 1950 18.97% 212 1300 16.31%

217 1125 1324 84.97% 838 883 94.90%

219 39 1291 3.02% 27 862 3.13%

221 281 1452 19.35% 116 969 11.97%

222 3 1500 0.20% 17 1001 1.70%

228 332 1387 23.94% 237 925 25.62%

231 2 942 0.21% 0 628 0.00%

233 497 1841 27.00% 342 1228 27.85%

(Ratios of all 48 datasets are available at https://github.com/yuhang-lin/ECGAD_

extended_result/blob/master/abnormal_segment_ratio.md.)

the constraint, the lower bound was lowered progressively until one was found.)
When more than one set of parameter values gave the same accuracy, then the
one that had the smaller window size was picked because a smaller window size
can output the outlier quicker and can be more robust when the input data is
smaller.

4.2 Experiment Results and Analysis

The results are presented in two different scenarios. One is personalized, where
the parameters are tuned for individual patients as discussed in Section 4.1. The
other is aggregated, where the average of the individual optimal parameter values
are used as generic parameter values for all patients.

Personalized Results Table 3 summarizes the accuracy, sensitivity, and speci-
ficity obtained for each patient’s ECG dataset when the outlier detection param-
eters were optimized for each dataset separately. This case reflects personalizing
the anomaly detection for individual patients.

Overall, the performance using personalized parameters is good. 37 out of
48 datasets achieved accuracy higher than 90%. Note from Table 2 that ECG
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Table 3. Best testing performance on each patient using personalized parameters
(sensitivity N/A for zero abnormality ratio).

Patient # Sensitivity Specificity Accuracy Optimal Parameter Values
Window K Radius

106 0.98 0.97 0.98 97 45 2.19

114 0.67 0.95 0.95 80 14 0.92

116 0.97 0.97 0.97 87 13 3.05

118 0.74 0.94 0.93 65 4 1.65

119 1.00 0.89 0.92 31 21 2.58

122 N/A 1.00 1.00 28 3 2.53

200 0.92 0.94 0.93 74 40 2.10

201 0.94 0.96 0.95 73 36 1.42

202 1.00 0.93 0.93 85 5 0.91

205 1.00 1.00 1.00 98 65 1.33

207 0.28 0.97 0.65 59 25 1.90

208 0.96 0.58 0.72 75 26 1.67

213 0.81 0.87 0.86 80 17 1.73

217 1.00 0.00 0.94 99 80 1.08

219 0.68 0.97 0.97 60 5 3.04

221 0.96 1.00 0.99 44 19 2.12

222 0.06 1.00 0.98 25 4 2.07

228 0.60 0.91 0.83 74 33 2.09

231 N/A 1.00 1.00 25 14 2.87

233 0.97 0.94 0.95 27 10 3.07
Average from 48 datasets: sensitivity 0.83, specificity 0.88, accuracy 0.92.

(Results for all 48 datasets are available at https://github.com/yuhang-lin/ECGAD_

extended_result/blob/master/personalized_result.md.)

datasets of the patients 122 and 231 have no abnormal segments in the testing
data, so the sensitivity for them is not applicable (N/A).

For the ECG datasets of patients 207, 208, 213, and 228, the accuracy was
lower than 90%, as low as 65% for the patient 207. There are a few reasons we be-
lieve can explain these lower accuracies.The first reason is the noise in the filtered
dataset. The ECG datasets are from ambulatory devices, which cause significant
noises such as baseline drifts, motion artifacts, and powerline noise. Although
filtered, some datasets still show significant noise. (Figure 5 illustrates typical
noisy segments from dataset 207.) Further removing noise from pre-filtered data
would require sophisticated signal processing, and was beyond the scope of the
project. The second reason is the change of statistics between training dataset
and testing dataset during the performance evaluation. This in part can be re-
flected by the different abnormal segment ratio between training and testing as
shown in Table 2. In this project, the performance tuning is not adaptive to such
a change (called “concept drift”) and, therefore, the algorithm may not be able
to react to unexpected changes by adjusting the tuned parameter values.

Abnormal segment ratio and accuracy measures: Figure 6 shows the trend of
accuracy, sensitivity, and specificity for datasets sorted by the abnormal segment
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Fig. 5. Example noisy segments from the ECG of the patient 207. (The ECG dataset of
patient 207 in particular shows the lowest accuracy overall among all datasets. Looking
into the dataset in detail, we found that segments in this dataset have several different
types of normal segments, such as 1457 left bundle branch block beats (L), 86 right
bundle branch block beats (R), and 107 atrial premature beats (A), as well as several
different types of abnormal segments such as 105 premature ventricular contractions
(V), 472 Ventricular flutter waves(!) and 105 Ventricular escape beats (E) (see Table 1
for different annotation codes of ECG segments). Indeed, this dataset is mentioned as
“an extremely difficult record” [20] in PhysioBank.)

ratio in the testing dataset. Note that the distribution of abnormality ratios in
the datasets is skewed to approximately 45% or lower and approximately 90%
or higher. The achieved accuracy is in a fairly consistent range across the two
skewed ranges of abnormality ratio, which indicates robustness of the employed
outlier detection mechanism to the ratio. The sensitivity shows a similar trend,
but it drops very low when the ratio is near zero (< 1%). It makes sense because
lower ratio means fewer abnormal segments (i.e., true positives) and, hence,
lower statistical significance. In contrast, the specificity drops very low when the
ratio is near 1 (> 90%). It makes sense because higher ratio means fewer normal
segments (i.e., true negatives) and, hence, lower statistical significance.

Fig. 6. Accuracy measures for different abnormal segment ratios.

Aggregate (i.e., Non-personalized) Results Based on the optimum param-
eter values determined in the personalized anomaly detection experiment (see
Table 3), we calculated their mean values as the generic parameter values used
commonly for all 48 patients, namely, non-personalized. The mean values are 62
for w, 17 for k, and 1.8 for r. Table 4 shows the resulting performances.

The accuracy achieved using the non-personalized approach is lower than that
of the personalized approach for 31 out of 48 datasets, although 24 datasets still
achieved accuracy higher than 90%. Overall there were significant degradation
of accuracy. The datasets for patients 217 and 219 in particular sustained the
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Table 4. Performance on each patient when not personalized (window w = 62, k = 17,
and radius r = 1.8 for all patients’ datasets; sensitivity N/A for zero abnormality ratio).

Patient # Sensitivity Specificity Accuracy Patient # Sensitivity Specificity Accuracy

106 0.68 0.96 0.86 207 0.21 0.97 0.61

114 0.33 1.00 0.99 208 0.82 0.75 0.78

116 1.00 0.81 0.82 213 0.84 0.83 0.83

118 1.00 0.87 0.88 217 0.34 0.16 0.33

119 0.30 0.78 0.65 219 1.00 0.14 0.17

122 N/A 0.98 0.98 221 0.97 0.99 0.99

200 0.37 0.98 0.72 222 0.18 0.99 0.98

201 0.03 0.99 0.90 228 0.60 0.91 0.83

202 0.00 0.94 0.94 231 N/A 1.00 1.00

205 0.98 1.00 1.00 233 1.00 0.55 0.68
Average from 48 datasets: sensitivity 0.56, specificity 0.87, accuracy 0.82.

(Results for all 48 datasets are available at https://github.com/yuhang-lin/ECGAD_

extended_result/blob/master/nonpersonalized_result.md.)

biggest degradation – from 94% to 33% for the patient 217 and from 97% to
17% for the patient 219.

4.3 More on Personalized versus Non-personalized

The histograms in Figure 7 show the number of ECG datasets in each 10%
range of accuracy when the anomaly detection was personalized and not per-
sonalized. It is visually evident that personalized detection by far outperforms
non-personalized detection. Numerically, the chi-squared distance of the person-
alized histogram from the non-personalizedis 10.2.

(a) Personalized detection. (b) Non-personalized detection.

Fig. 7. Number of ECG datasets in different accuracy ranges (bin size = 10%).

The fairly large difference in the accuracy performance is understood when
the distribution of the optimal sets of outlier detection parameters (i.e., w, k, r)
are examined, as shown in the scatter plot in Figure 8. It shows the MCOD
parameters tuned personalized for each patient’s ECG dataset (see Table 3) and
also the aggregated mean values of them (i.e., w = 62, k = 17, r = 1.8) used in
the non-personalized case. The parameter values tuned for different datasets are
widely spread in the parameter space, as indicated by their standard deviations
24, 21, and 0.85 for w, k, and r, respectively. These observations confirm that
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Fig. 8. Scatter plot of personalized MCOD parameters.

ECG varies a lot for individual patients and, therefore, personalized detection is
much desired.

5 Related Work

There is a large body of work done on anomaly detection from ECG. In this
section, we discuss briefly what we believe are a representative sample reflecting
the state of the art in three aspects of this project: (a) machine learning methods
used for automatic detection of abnormal ECG segments, (b) feature extraction
methods to reduce ECG segments to feature vectors, and (c) distance-based
outlier detection from a data stream.

Machine Learning Methods: Various machine learning methods have been used
for ECG classification, such as decision tree [4], support vector machine [24], ar-
tificial neural network [26], and their ensemble [15]. These methods, however, are
geared for offline classifications and are not necessarily handling individual ECG
segments separately. In contrast, some recent work are far more suitable for
online real-time classification of ECG segments as done in this project. For ex-
ample, Veeravalli et al. [23] used dynamic time warping (DTW) based similarity
calculation, personalized to individual patients by obtaining the normal ECG
segment through clustering (K-means). For another example, Chauhanv and
Vig [5] used long short-term memory (LSTM) recurrent neural networks (RNN)
as a predictive model trained with normal ECG segments to detect abnormal
segments. Both methods have the advantage of working well with continuously
arriving ECG segments. To the best of our knowledge, there is no prior work
that examined using outlier detection based on online clustering, which was the
goal in this project.

Feature Extraction Methods: As mentioned in Section 3.3, feature extraction in
this project is for dimensionality reduction from an ECG segment to a feature
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vector. There have been two different ways the extracted features are used. One
way is as a synopsis of an ECG segment characterizing a certain anomaly [9]. For
example, a P-R interval can be used to detect premature ventricular contraction,
an R-R interval to detect premature atrial heartbeat, and the QRS duration to
detect a ventricular premature complex [17]. Another way is as an input model
of the segment to a subsequent machine learning algorithm. In this project, it is
the discrete wavelet transform (DWT), chosen for its efficiency and resilience to
noise. There are several others, such as principal component analysis (PCA) [16],
rank correlation coefficient (RCC) [11], and B-splines [10]. They all extract dom-
inant features that represent the ECG signal approximately but differ in the
specific sense of dominance. Specifically, DWT selects the first 2n, where n = 5
in our work, coefficients as the dominant features; PCA selects dominant linear
components that, when linearly combined, approximates the input signal; RCC
selects a subset of ECG data samples whose RCC values are the highest, where
RCC is a measure of the correlation based on the ranks of data values; B-splines
are used as bases that are linearly combined to fit ECG signal “curve” lines, and
the resulting “knots” and parameters of the B-splines are used as the features.

Outlier Detection Methods: In addition to MCOD [8], the distance-based outlier
detection method used in this project, there are other methods that can be used
for outlier detection. For example, MOA supports the following ones that we be-
lieve are in the mainstream of online outlier detection over data streams: Exact-
STORM and ApproxSTORM (STORM stands for “Stream Outlier Miner”) [1],
Abstract-C [25], COD [14] and MCOD, and additionally AnyOut [2]. All of these
methods except AnyOut are distance-based methods developed progressively for
improvements. (AnyOut is a method enabling the detection of an outlier “any
time” the time expires, and is orthogonal to the detection mechanism (e.g.,
distance-based, density-based)). As shown in the comprehensive experiments
conducted by Tran et al. [22], MCOD performs best among all distance-based
methods.

6 Conclusion

The feasibility and accuracy of detecting abnormal segments from an ECG data
stream using distance-based online outlier detection have been demonstrated
in this project. Combined with features extracted using Haar discrete wavelet
transform, the microcluster-based continuous outlier detection algorithm suc-
cessfully detected abnormal ECG segments with higher than 90% accuracy for
a majority of datasets. The accuracy performance compared between personal-
ized and non-personalized anomaly detection scenarios showed that personalized
showed by far higher accuracies.

There are several issues in the employed algorithms that still warrant further
work. First, the outlier detection mechanism was implemented as a binary clas-
sifier to normal versus abnormal, without distinguishing among different types
of abnormality. It is suggested that the mechanism is extended to a multi-class
classifier that can label the anomaly type of abnormal segments. Second, the R
peak detection algorithm used in this project has a significant room for improve-
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ment so it will not result in multiple R peaks in the same segment as happened
in this project. There are more advanced techniques, and one of them should be
adopted for better results. Third, the online outlier detection algorithm used in
this paper works well when the ECG data stream is stationary, and as a result,
the accuracy performance was somewhat inadequate for some ECG datasets. It
would be desired to enhance the algorithm to be adaptive to the change of the
ECG segment statistic, such as abnormal segment ratio, to adjust the outlier
detection parameters according to the change of statistic.

As mentioned in Introduction, the project initially started out on an Android
smartphone platform. The project will continue to migrate the program codes of
all steps into the Android platform. Then, a performance profile (i.e., the elapsed
time of individual steps of the processing algorithm) will be built to assess the
real-time “fitness’ of the method used in this project.
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